Do Now:

Matching...

perpendicular bisector
 angle bisector
 orthocenter
 median
 altitude
 incenter

- a.) Draw an angle bisector for angle A
- b.) Draw a perpendicular bisector of side BC
- c.) Draw a median from angle C to side AB
- d.) Draw an altitude from angle B to side AC

DLT Bonus:

Point *P* is the incenter of $\triangle HKM$.

Find JP.

- a.) 7
- b.) 11
- c.) 24
- c.) 25
- d.) 49

Unit 8 Day 3: Segments of Triangles

Applying theorems about special segments of triangles (6.2-6.3)

Today's I Can Statements:

ST-1: I can identify different segments in a triangle.

ST-2: I can use theorems of segments in a triangle to solve.

ST-3: I can use coordinates to prove geometric theorems algebraically.

Perpendicular Bisector Theorem

In a plane, if a point is <u>on</u> the perpendicular bisector of a segment, then <u>it is</u> <u>equidistant from the</u> <u>endpoints of the segment.</u>

If C is on the perp. bisector of AB, then CA=CB.

In the Diagram, \overrightarrow{WX} is the perpendicular bisector of \overline{YZ} . What is the length of \overline{XZ} if x=4.

$$\overline{XZ} = 2x + 11$$

$$\overline{XZ} = 2(4) + 11$$

$$\overline{XZ} = 19$$

Line DE bisects line FG to form a 90° angle.

Find the lengths of \overline{DF} and \overline{DG} .

$$3x-2 = -8x + 13$$
 $11x = 15$
 $x = 15/11$

$$\overline{DF} = \frac{23}{11} = 2.09$$

$$\overline{DG} = \frac{23}{11} = 2.09$$

Converse of the Perpendicular Bisector Theorem

In a plane, if a point is <u>equidistant from the</u> <u>endpoints of a segment</u>, then it is on the perpendicular bisector of a segment.

If DA = DB, then D lies on the \perp bisector of \overline{AB} .

What segment lengths can you say are equal? Why?

2. Find NK.

$$(ex - 5 = 4x + 1)$$

 $2x = 6$
 $x = 3$ $\overline{NK} = 13$

3. Is M located on JK? Why?

4x+1 6x-5

LM=NM and JK

icular bisector, SO it

M

8

8

yes, b

because we know LM=NM and JK represents a perpendicular bisector, SO it will go through the point M In the Diagram $\overline{MO} = \overline{NO}$. Find the values of x and y.

Angle Bisector Theorem

If a point is <u>on</u> the bisector of an angle, then it is <u>equidistant from the two sides of the angle.</u>

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then $\overrightarrow{DB} = \overrightarrow{DC}$.

For the Diagram given, find the value of x.

Converse of the Angle Bisector Theorem

If a point is in the interior of an angle and is equidistant from the

sides of the angle, then it lies on the bisector of the

angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $\overrightarrow{DB} = \overrightarrow{DC}$, then \overrightarrow{AD} bisects $\angle BAC$.

Find the value of x.

$$5x - 8 = 4x + 10$$

$$9x = 18$$

$$x = 9$$

Find the measure of $\angle BAD$

Tonight's Assignment: WS 6.1-6.3 Homework

Remember:

Segments of Triangles Quiz will be

Friday 1/31 Monday 2/3

Today's I Can Statements:

ST-1: I can identify different segments in a triangle.

ST-2: I can use theorems of segments in a triangle to solve.

ST-3: I can use coordinates to prove geometric theorems algebraically.